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Abstract

This document provides supplementary information which
is not elaborated in our manuscript due to space limits. Sec-
tion 1 discusses the relation between consistency and equiv-
ariance and the reasons for using spatial adpative batch
normalization from a theortical angle. Section 2 presents
qualitative results for the ablation study. Section 3 presents
additional qualitative results for our method and compari-
son against prior art. We also present a video demo which
includes a brief introduction of our method and animated
qualitative results.

1. Consistency and Equivariance

We have mentioned in the main text that equivariance is
essential for producing consistent outcomes. Here we elabo-
rate on this point. We employ a convolutional backbone that
consists only of 1× 1 convolutions. The backbone takes a
2D grid of image coordinates as input. In this setting, we
hypothesize that the 3D pose mapping network performs cer-
tain non-linear spatial transformations on the 2D coordinates
based on the SMPL mesh that conditions it. To ensure that
these transformations are reflected in the generated image,
we need a CNN backbone that is equivariant. Mathemati-
cally, a function is equivariant if applying a transformation
to its input leads to the same result as applying the transfor-
mation to its output. We think this is vital for the network
to learn features that are not tied to absolute coordinates but
follow the coordinates transformed under 3D guidance.

In the main text we compared between spatial adaptive
instance normalization (SAIN) and spatial adaptive batch
normalization (SABN) for injecting the style maps rendered
by the 3D pose mapping network into the 2D backbone.
Both of these operations contain a normalization step and
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a denormalization step. Here we inspect the normalization
step in detail. The former uses instance statistics for this
step while the latter uses batch statistics. We will use the
following notation: x is an input vector of size n, y is an
output vector of size n, W is a weight matrix of size m× n,
and b is a bias vector of size m.

First, let us consider instance normalization. For each
instance xi in the batch, we have

yi =
Wxi + b−mui

σi
,

where mui and σi are the mean and standard deviation of
Wxi+b. This means that IN maps all instances to have zero
mean and unit variance. However, this also means that IN
discards some information about the relative magnitude and
scale of each instance. When x store coordinates, instance
normalization effectively scales and shifts x which makes
the network unequivariant.

Next, let us consider normalization with batch statistics.
For a batch of size B, we have

y =
Wx+ b− µ

σ
,

where µ and σ are the mean and standard deviation vectors
across the batch. When the batch size approaches infinity,
we have

lim
B→∞

µ = E[Wx+ b],

lim
B→∞

σ2 = diag(V[Wx+ b]),

where E[·] denotes expectation and V[·] denotes covariance.
These limits are independent of any particular instance in
the batch. Assuming that the entries in x are independent
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and normally distributed, i.e. xi ∼ N (µx, σ
2
x),

lim
B→∞

µ = E[W] · E[x] + E[b]

= µxW · 1+ b,

lim
B→∞

σ2 = diag(V[Wx])

= diag(WTV[x]W)

= σ2
xdiag(WTW)

This normalization maps all instances to have the same mean
and variance vectors as the whole batch. However, this does
not mean that it discards any information about the relative
magnitude and scale of each instance, since these limits only
depend on the global statistics of x. When µx = 0 and
σx = 1 the normalization becomes equivariant.

The reasoning above provide mathematical intuitions in
preferring SABN over SAIN for better equivariance. How-
ever, the equivatiance of SABN still depends on several
assumptions. Devloping an operation that do not rely on
these assumptions could be a promising direction for future
work.

2. Ablation Study (Qualitative Results)
We present qualitative results of the ablation study in Fig.
1. Note that all ablation models are trained at 256 × 128
resolution due to limited computational resources. Replac-
ing the segmentation-based GAN loss with traditional binary
GAN loss causes the model to lose the ability of pose con-
ditioning, as shown by the result of the VAE configuration.
The model that combines 2D and 3D networks in a feed-
forward manner is functional, but less desirable in image
quality and consistency. Using an upsampling convolutional
backbone instead of pixel-wise independent one results in
impaired consistency. When passing the 3D style maps into
the 2D backbone, using instance normalization instead of
batch normalization has similar effects.

3. Additional Qualitative Results
We show additional qualitative comparison results in Fig.

2. For our method, we provide additional qualitative results
in Fig. 3, appearance interpolation results in Fig. 4 and pose
interpolation results in Fig. 5. We also provide animated
results in the video demo.
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Figure 1: Ablation Study Qualitative Results. We show four cases separated by dotted lines. For each case we show one identity in two
poses and three view-angles. The conditioning mesh is shown on the left of each case.
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Figure 2: Additional Qualitative Comparison. We show four cases separated by the dotted line. For each case, the first row shows
unconditional generation results, the second row shows pose-conditional generation results. We show three view angles, from −30◦ to 30◦



Figure 3: Additional Qualitative Results. Each row shows two cases separated by the dotted line. For each case we show one identity in
two poses and three view-angles. The conditioning mesh is shown on the left of each case.

Figure 4: Additional Appearance Interpolation Results. Each row shows two cases separated by the dotted line.



Figure 5: Additional Pose Interpolation Results. Each row shows two cases separated by the dotted line.


